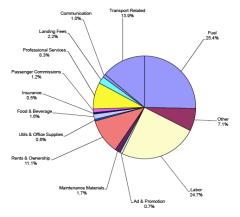


Single Pilot Operation: Motivation, Issues Architectures and Con-Ops

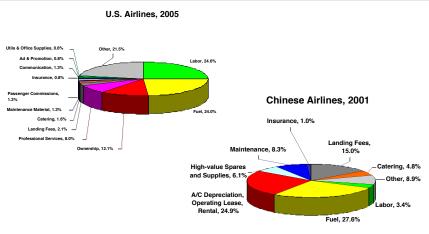
> Prof. R. John Hansman Director MIT International Center for Air Transportation rjhans@mit.edu

Hypothesis – Nominal Flight Operations Can be Reliably Managed by Single Pilot with Current or Near Term Systems

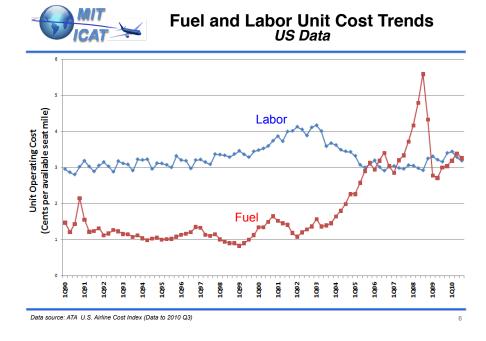


Motivation for SPO

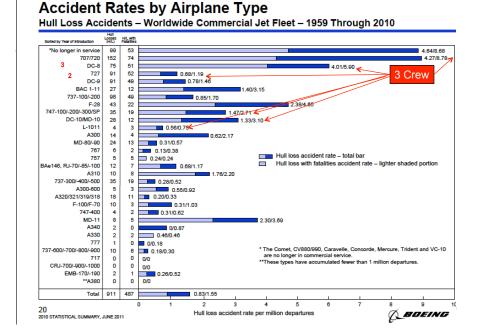
- Air Carrier (Part 121)
 - Cost
 - Labor
 - Training
 - Accommodations
 - Flexibility
 - Scheduling
 - Pilot pool
- Business and Personal Aviation (Part 91)
 - · Safety
 - Flexibility
 - Owner Operator
 - Cost

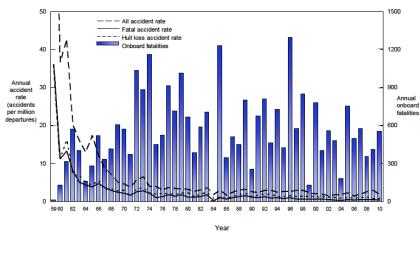


Operating Costs by Objective Grouping



Source: "ATA US Airline Cost Index: Major & National Passenger Carriers, Q3 2011.


Source: "Cost Analysis of China Airline Industry", Aviation Industry Development Research Center of China, 10/14/2003. ATA US Airline Cost Index: Major & National Passenger Carriers.



Air Carrier Crew Trends

- Crew of 5
 - · Captain, First Officer, Flight Engineer, Navigator, Radio Operator
- 4 Radio Operator (1950s)
 - Tuned Radios, SELCAL, Satellite Communication
- 3 Navigator (1970s)
 - IRS, Area Navigation, Satellite Navigation
- 2 Flight Engineer (1980s)
 - Systems Simplification
 - Engine Indication and Crew Alerting Systems (EICAS)
- 1 ? First Officer
 - Ground Decision Support, Cabin Crew Backup
- 0 ? Captain
 - Cargo or Passenger Carrying UAV's?

Accident Rates and Onboard Fatalities by Year Worldwide Commercial Jet Fleet – 1959 Through 2010

<i>(LBOEING

2010 STATISTICAL SUMMARY, JUNE 2011

11

.

.

Single Pilot IFR Accident Rates

"Analysis of accidents during instrument approaches". <u>Bennett CT,</u> <u>Schwirzke M</u>.

- Analysis of 25 Years of Data
- VFR approach accidents more frequent than IFR (14.82 vs. 7.27 accidents/100,000 approaches) but less severe
- SPIFR accident rates are not much higher than dual-pilot IFR (DPIFR), 7.27 vs. 6.48 accidents/100,000 approaches
- Night SPIFR accident rate is almost 8 times the rate of day IFR, 35.43 vs. 4.47 accidents/100,000 approaches

AOPA Air Safety Foundation

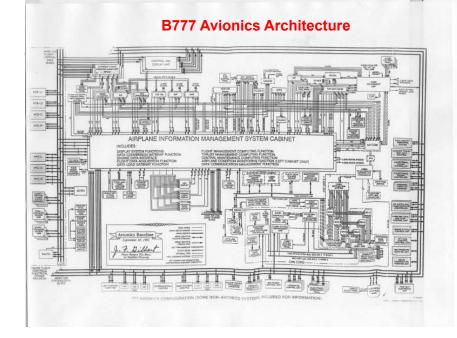
- 1983-1999
- 61 single-engine daytime accidents occurred with two pilots on board, compared to 1,170 single-engine daytime accidents with one pilot.

Certification Considerations

Catastrophic Accident				
Adverse Effect On Occupants				
Airplane Damage				
Emergency Procedures				
Abnormal Procedures				
Nuisance				
Normal				
	Probable	Improbabl	Extremely Improbab	e

Descriptive Probabilities

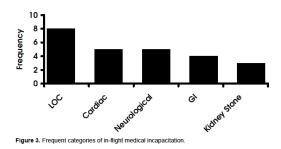
Probability (per unit of exposure)


1	FAR	JAR
·		Frequent
10E-3	Probable	
40E E		Reasonably Probable
10E-5		
10E-7	Improbable	Remote
	-	Extremely Remote
10E-9	Extremely	Estern sta
,	Improbable	Extremely Improbable

Reliability Architectures

- Failure Modes and Effects Analysis
- Avoid Single String Failure
 - Cannot guarantee 10E-9
- Fail Safe, Fail Operational
- Redundancy Architectures
 - Dual Redundant for Passive Failures

 e.g. Wing Spar
 - Triple Redundancy for Active Systems
 - 777 Fly By Wire
 - Sensors
 - Processors
 - Actuators
 - Data Bus


Functional Requirements for Dual Crew

- Failure Mode Based
 - Physical
 - Crewmember incapacitation rate historically around 1/month
 - Judgment

Rate of Crew Incapacitation

- US had 47 events (flights) between 1983 and 1988
 - CAMI Repot "In-Flight Medical Impairment of US Airline Pilots: 1993-1998", DeJohn, Wolbrink, Larcher
 - 39 incapacitations, 11 impairments, 3 cases of multiple crew members

Recent JetBlue Event

Functional Requirements for Dual Crew

- Failure Modes

- Physical
 - Crewmember incapacitation rate historically around 1/month
- Judgment
- Strength Based
 - Hydraulic Failure
- Task Based
 - Degraded mode operations (eg pressurization failure)
 - · High density airspace
 - Diversions
 - Passenger in-flight emergency
 - Inspection
 - Evacuation

Toilet

Redundancy Architectures Part 121

- Judgment Redundancy
 - Virtual Co-Pilot Enhanced Dispatch
 - Comm and Surveillance Systems Support Real-Time Interaction Over Most of the World (need Bandwidth)
- Physical Redundancy
 - Flight Attendant Backup Pilot
 - Re-think cockpit doors
 - Automated Backup
 - Optionally Piloted Vehicle
 - Ground Based Backup
 - Remotely Piloted Vehicle
 - Drives Comm Security Standard

Redundancy Architectures

17

Optionally Piloted Vehicles

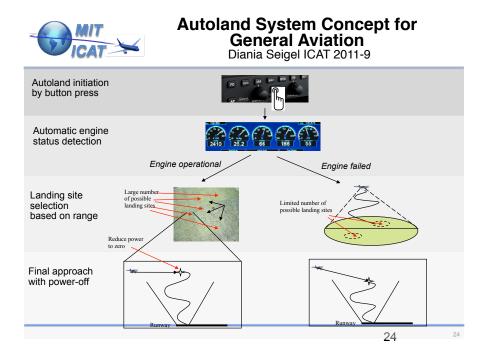
Aurora Centaur OPA

Redundancy Architectures Part 91

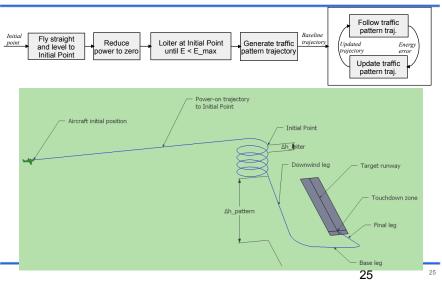
22

Judgment Redundancy

- GA Dispatch Services (cost, liability)
- In Flight Dispatch, Decision Support Services
- Cockpit Decision Support Systems
 - Virtual Flight Instructor
 - "Do you really want to do that Dave?"


Physical Redundancy

- Untrained Passenger
 - Simplified Flight Mode
- · Automated Backup
 - Optionally Piloted Vehicle
 - Emergency Landing Capability (eg Seigel)
- Ground Based Backup (cost)


Digital Autopilots with Recovery Function Avidyne DFC 90

Example Trajectory Plan

Additional Thoughts

- Communication and Control Architectures
 - Integrity and Security Requirements
- Boredom Issues
- Public Acceptance
- Will Complexity of Next Gen Procedures Offset
- Non-Normal Operations

