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SAFES50 Project — Safe Autonomous Flight Environment
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Goals

 Enable High-Density Low-Altitude UTM Operations over Densely-Populated Urban
Environments through Advanced Vehicle Autonomy

* Vary the vehicle and autonomy

* Assumes today’s technology and infrastructure (fix everything else)
« Evolve the UTM TCL 4 framework as necessary to meet derived requirements

Technical Objectives

« SAFES50 Reference Design Study
 Reference Architectures

 Flight and Simulation Experimentation
* Feasibility, Characterization, Requirements Derivation, and Validation
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= Requirements for Autonomous Operations
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SAFES50 Vehicles (top)
SAFES50 Gen-1 Vehicle System (bottom)

Presented February 12, 2020 at NASA Ames Research Center, Moffett Field, CA, USA. 7

SAFES50 Gen-2.5 Autonomy Avionics Payload Gen-2 on SAFES0 Multicopter



GPS-Free Navigation and Mapping in Constrained Spaces
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e Autonomous Sensor Fusion,

@ Environment Mapping and Hazard Characterization

National Aeronautics and Space Administration
Ames Research Center
[ Moffett Field, CA 94035

Presented February 12, 2020 at NASA Ames Research Center, Moffett Field, CA, USA.




Intelligent Cable and Power Line Detection

Power Line Identification and Reconstruction through ML/AI - Flight Test Verification Results
Raw LiDAR point clouds (left), voxel processing (middle), reconstructed powerlines at 75m (right).
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Real-Time Constrained Trajectory Optimization — Low-Level
Planner
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Real-Time Constrained Trajectory Optimization — High-Level Nﬁp
Planner T
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ﬁ& Real-Time Constrained Trajectory Optimization — Volume

Conformance




Collaborative Sense and Avoid
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Questions?



Flight Tests
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Goal

« Enable High-Density Low-Altitude UTM Operations over Densely-Populated Urban Environments
through Advanced Vehicle Autonomy

Technical Objectives

« SAFE50 Reference Design Study

o Comprehensive system-wide design study for autonomous UAS operations (from UTM down to
vehicle subsystem level)

o Design for future generation vehicles and avionics (vary the vehicle system)
o Assumes today’s technology and infrastructure (fix everything else)
o Extend UTM TCL-4 framework as necessary to meet requirements and achieve objectives

« SAFES50 Reference Architectures (\Vehicle, Avionics, and Flight Autonomy)
o Software Implementation and Flight Hardware Prototypes

« Feasibility and Validation
« Modeling and Simulation
 Simulation and flight test experimental validation



Overview

Safely Enabling Routine High-Density Low-Altitude UAS Operations over
Densely-Populated Urban Environments

» Unmanned Aircraft Systems (UAS) Traffic
Management (UTM) project seeks to advance
concepts towards higher-density operations over
densely-populated areas

» UAM and UTM industry partners are actively
seeking access to this space

» Anticipated high-demand market with significant
economic growth potential

» Non-trivial shift from UTM TCL 4 to high-density
urban UAS operations
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Challenges for High-Density Urban Flight Operations

Flight over people, property, and critical urban infrastructure

 Highly constrained spaces within urban canyons

» Operations almost entirely beyond visual and communication line-of-site
» Concurrent operations in high-density air traffic

 Mission designs drive towards larger more-capable vehicles in higher risk
categories

 Cluttered and challenging RF environment and GPS degraded/denied
 Urban environment is unpredictable and dynamic
« Complex hazardous atmospheric conditions that are poorly understood

» Many stakeholders with competing needs and desires

Presented February 12, 2020 at NASA Ames Research Center, Moffett Field, CA, USA. 20



Enabling Safe Autonomous UAS Urban Operations @sﬁ

Gaps Approach Technical Objectives (Vehicle Autonomy Focus)

Concepts and Standards Gap Perform systems-wide studies
Lack of guidance for FAA rulemaking to show path towards urban Conduct system-wide/systems-
Disparate technologies, assumptions, capabilities access for UTM through level reference design study.

Lack of industry standards and requirements
No clear certification path

onboard autonomy.

Enabling

Autonomous

Knowledge Gap . Develop high-fidelity environment
Identify gaps and advance the . . High-Density
+ Lack of validated system-wide studies state of the art in fundamental models. Develop validated flight
+ Poor understanding of vehicle behavior and . dynamics models from wind- Urban UAS
environmental conditions understanding. tunnel experimental data.
Operations.

Technology Gap

_ _ Develop feasible validated Develop and validate SAFE50
» Current industry platforms in state-of-the-art lack reference architectures for reference design vehicle and

functionality, performance, capabilities and d d vehicl )
robustness advanced venicies. autonomy architectures.

* Gap between academic research and industry
* Low-TRL research literature technologies for this
application
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% SAFES0 Design Process
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