Go to the NASA Homepage
 
Search >
Click to Search
Human Systems Integration Division homepageHuman Systems Integration Division homepage Organization pageOrganization page Technical Areas pageTechnical Areas page Outreach and Publications pageOutreach and Publications page Contact pageContact page
Human Systems Integration Division Homepage
Outreach & Publications Sidebar Header
Go to the Outreach & Publications pageGo to the Outreach & Publications page
Go to Awards pageGo to Awards page
Go to News pageGo to News page
Go to Factsheets pageGo to Factsheets page
Go to Multimedia pageGo to Multimedia page
Go to Human Factors 101 pageGo to Human Factors 101 page
What is Human System Integration? Website
Publication Header
Effects of transparency on pilot trust and agreement in the autonomous constrained flight planner  (2016)
Abstract Header
We performed a human-in-the-loop study to explore the role of transparency in engendering trust and reliance within highly automated systems. Specifically, we examined how transparency impacts trust in and reliance upon the Autonomous Constrained Flight Planner (ACFP), a critical automated system being developed as part of NASA's Reduced Crew Operations (RCO) Concept. The ACFP is designed to provide an enhanced ground operator, termed a super dispatcher, with recommended diversions for aircraft when their primary destinations are unavailable. In the current study, 12 commercial transport rated pilots who played the role of super dispatchers were given six time-pressured "all land" scenarios where they needed to use the ACFP to determine diversions for multiple aircraft. Two factors were manipulated. The primary factor was level of transparency. In low transparency scenarios the pilots were given a recommended airport and runway, plus basic information about the weather conditions, the aircraft types, and the airport and runway characteristics at that and other airports. In moderate transparency scenarios the pilots were also given a risk evaluation for the recommended airport, and for the other airports if they requested it. In the high transparency scenario additional information including the reasoning for the risk evaluations was made available to the pilots. The secondary factor was level of risk, either high or low. For high-risk aircraft, all potential diversions were rated as highly risky, with the ACFP giving the best option for a bad situation. For low-risk aircraft the ACFP found only low-risk options for the pilot. Both subjective and objective measures were collected, including rated trust, whether the pilots checked the validity of the automation recommendation, and whether the pilots eventually flew to the recommended diversion airport. Key results show that: 1) Pilots' trust increased with higher levels of transparency, 2) Pilots were more likely to verify ACFP's recommendations with low levels of transparency and when risk was high, 3) Pilots were more likely to explore other options from the ACFP in low transparency conditions and when risk was high, and 4) Pilots' decision to accept or reject ACFP's recommendations increased as a function of the transparency in the explanation. The finding that higher levels of transparency was coupled with higher levels of trust, a lower need to verify other options, and higher levels of agreement with ACFP recommendations, confirms the importance of transparency in aiding reliance on automated recommendations. Additional analyses of qualitative data gathered from subjects through surveys and during debriefing interviews also provided the basis for new design recommendations for the ACFP.
Private Investigators Header
Authors Header
Groups Header
Keywords Header
automated, automation, aviation, commercial, human-machine, interface, tools, trust
References Header
In 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC) (pp. 1-9). IEEE
Download Header
Adobe PDF Icon  07777998.pdf (Download Acrobat Reader Click to download Adobe Acrabat Reader)
  (422KB) (application/pdf)
Go to the First Gov Homepage
Go to the NASA - National Aeronautics and Space Administration Homepage
Curator: Phil So
NASA Official: Jessica Nowinski
Last Updated: August 15, 2019