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In-Time Aviation Safety Management System
IASMS

• Synthesize large and diverse data sets

• Predictive safety capabilities

• Ellis et al., 2022

• Flight Safety Foundation, 2023
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Support Resilient Human Performance

• From Hollnagel: Anticipate, monitor, respond, learn…

• How might we… 

• Help pilots anticipate in real-time by accessing IASMS analyses?
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ML Analysis of Latent Safety Data

• ML might extract skilled performance from existing data sources 
(Matthews et al., 2023)

• Consider expanding to other data sources, e.g. FOQA

• Develop an integrated system to automatically analyze disparate 
data, compile into a form accessible to crews in real time



• ASAP or FOQA event triggers the system 

• Find patterns of adaptation in the same environmental and 
operational conditions

• Learn what makes things go right in the same conditions

ML Analysis of Latent Safety Data



ML Analysis of Latent Safety Data
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Bring IASMS – Designed Data to the Flight Deck

• Pushed when system detects a threat

• Pulled when crew requests an analysis of upcoming phase of flight
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Interface Design

• Ecological Interface Design (EID) → Vicente & Rasmussen, 1992

• Tell a story in an interactive visual form, using data

• Support formative work goals



Interface Design

QUERY THREATSACCEPT OPTIONS

Loiter Fuel: 18 mins MEL: #1 Rev RCAM: 4
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Access to 
datasets

Real-Time 
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ML output 
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Challenges in the Way
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3D rendering of ML 
predictions and 
recommendations

A Bigger Hurdle
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