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1 Introduction 

The JPEG, MPEG, and CCITT H.261 image compression standards employ 

the Discrete Cosine Transform as a basic mechanism (Wallace, 1991). In JPEG, the 

DCT is applied to 8 by 8 pixel blocks, followed by uniform quantization of the 

DCT coefficient matrix. The quantization bin-widths for the various coefficients 

are specified by a quantization matrix (QM). The QM is not defined by the 

standard, but is supplied by the user and stored or transmitted with the 

compressed image. 

The principle that should guide the design of a QM is that it provide 

optimum visual quality for a given bit rate. QM design thus depends upon the 

visibility of quantization errors at the various DCT frequencies. In recent papers, 

Peterson et al. (Peterson, 1992; Peterson, Peng, Morgan, & Pennebaker, 1991) have 

provided measurements of threshold amplitudes for DCT basis functions at one 

viewing distance and several mean luminances, and Ahumada and Peterson 

(Ahumada, & Peterson, 1992) have devised a model that generalizes these 

measurements to other luminances and viewing distances. From this model, a 
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matrix can be computed which will insure that all quantization errors are below 

threshold. I call this the image-independent perceptual (IIP) approach. 

While a great advance over the ad hoc matrices that preceded it, the IIP 

approach has several shortcomings. The fundamental limitation is that the matrix 

is computed independently of the image. This would not be a problem if visual 

thresholds for artifacts were fixed and independent of the image upon which 

they are superimposed, but unfortunately this is not the case. 

First, visual thresholds increase with background luminance. The formula 

of Ahumada & Peterson describes the threshold for DCT basis functions as a 

function of a mean luminance. This would normally be taken as the mean 

luminance of the display. But variations in local mean luminance within the 

image will in fact produce substantial variations in DCT thresholds from block to 

block. I call this luminance masking. 

Second, threshold for a visual pattern is typically reduced in the presence 

of other patterns, particularly those of similar spatial frequency and orientation, a 

phenomenon usually called contrast masking. This means that threshold error in a 

particular DCT coefficient in a particular block of the image will be a function of 

the value of that coefficient in the original image. 

Third, the IIP approach ensures that any single error is below threshold. 

But in a typical image there are many errors, of varying magnitudes. The 

visibility of this error ensemble is not generally equal to the visibility of the 

largest error, but reflects a pooling of errors, over both frequencies and blocks of 

the image. I call this error pooling. 
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Fourth, when all errors are kept below a perceptual threshold a certain bit 

rate will result. The IIP method gives no guidance on what to do when a lower 

bit rate is desired. The ad hoc "quality factors" employed in some JPEG 

implementations, which usually do no more than multiply the quantization 

matrix by a scalar, will allow an arbitrary bit rate, but do not guarantee (or even 

suggest) optimum quality at that bit rate. I call this the problem of selectable 

quality. 

Here I present a general method of designing a custom quantization 

matrix tailored to a particular image. This image-dependent perceptual (IDP) 

method incorporates solutions to each of the problems described above: 

luminance masking, contrast masking, error pooling, and selectable quality 

The solution is to develop a very simple model of perceptual error, based 

upon DCT coefficients, and to iteratively estimate the quantization matrix which 

yields a designated perceptual error for each coefficient. 

2 Image-Independent Perceptual DCT Compression 

Before considering the image-dependent method, we briefly review the 

image-independent approach. In the JPEG standard, the image is first divided 

into blocks of size [8,8}. Each block is transformed into its DCT, which we write 

cgk, where the indices (i,j} index the DCT frequency (or basis function), and k 

indexes a block of the image. Though the blocks themselves form a two 

dimensional array, for present purposes a one dimensional index is sufficient. 

Each block is then quantized by dividing it, coefficient by coefficient, by a 

quantization matrix qV, and rounding to the nearest integer 
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The quantization error eijk in the DCT domain is then 

For each frequency (i,j] it is possible to measure psychophysically the 

smallest coefficient that yields a visible signal. We call this threshold ri,. The 

maximum possible quantization error evk is q,, /2. The image-independent 

approach of Ahumada & Peterson (1992) ensures that all errors are invisible 

(below threshold), by setting 

3 Luminance Masking 

Detection threshold for a luminance pattern typically depends upon the 

mean luminance of the local image region: the brighter the background, the 

higher the luminance threshold (van Ness, & Bouman, 1967). This is usually 

called "light adaptation," but here we call it "luminance masking" to emphasize 

the similarity to contrast masking, discussed in the next section. 

The effect of mean luminance upon the DCT thresholds is complex, 

involving both vertical and horizontal shifts of the contrast sensitivity function. 

We can compute a luminance-masked threshold matrix for each block in either of 

two ways. The first is to make use of a formula such as that supplied by 

Ahumada and Peterson (Ahumada, et al., 1992) , which we write symbolically as 

where cookis the DC coefficient of the DCT for block k. This solution is as 

complete and accurate as the underlying formula, but may be rather expensive to 



182 

compute. For example, in the Muthemafica language, using a compiled function, 

and running on a SUN Sparc 2, it takes about 1 second per block. 

A second, simpler solution is to approximate the dependence of $upon 

cook with a power function: 

where Foo is an average of the DC terms for the complete image, or more 

simply a nominal average of 1024 for an 8 bit image. The initial calculation of 

rphould be made assuming a luminance corresponding to Foo (typically half the 

maximum luminance). The parameter uT takes its name from the corresponding 

parameter in the formula of Ahumada and Peterson, wherein they suggest a 

value of 0.649. Note that luminance masking may be suppressed by setting uT=O. 

More generally, u,controls the degree to which this masking occurs. Note also 

that the power function makes it easy to incorporate a non-unity display Gamma, 

by multiplying uT by the Gamma exponent. 

This power function approximation is quite accurate over an upper range 

of luminances (above about 10 cd m-2). Except for very dark sections of an 

image, this range should be adequate. The discrepancy is also greatest at the 

lowest frequencies, especially the DC term. This could be corrected by adopting a 

matrix of exponents, one for each frequency. But note that the discrepancy is a 

conservative one, that is the threshold changes less with block luminance than 

the model calls for. 

4 Contrast Masking 

Contrast masking refers to the reduction in the visibility of one image 

component by the presence of another. This masking is strongest when both 
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components are of the same spatial frequency, orientation, and location. Here we 

consider only masking within a block and a particular DCT coefficient (It is 

possible to extend these ideas to masking between DCT coefficients, and across 

DCT blocks). We employ a model of visual masking that has been widely used in 

vision models, based on seminal work by Legge and Foley (Legge, & Foley, 

1980). Given a DCT coefficient cijk and a corresponding absolute threshold t,, our 

masking rule states that the masked threshold mc will be 

mC = Max[tvk t , j k l - w g  ] 
where wl, is an exponent that lies between 0 and 1. Note that when w, =0, no 

masking occurs, and the threshold is constant at f r J k .  When wlJ= 1, we have what 

is usually called "Weber Law" behavior, and threshold is constant (for c,J,>t,J,) in 

log or percentage terms. A typical empirical value is 0.7. Because the exponent 

wrJ may differ for different frequencies, we allow a matrix of exponents equal in 

size to the QM ({8,8}). 

Because the effect of the DC coefficient upon thresholds has already been 

expressed by luminance masking, we specifically exclude the DC tern from the 

contrast masking, by setting the value of w, = 0. It is interesting that while 

contrast masking is assumed to be independent from coefficient to coefficient 

(frequency to frequency), in the case of luminance masking the DC frequency 

affects all other frequencies. 

5 Perceptual Error and Just-Noticeable-Differences 

In vision science, we often express the magnitude of a signal in multiples 

of the threshold for that signal. These threshold units are often called "just- 
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noticeable differences," or jnd's. Having computed a masked threshold milk, the 

error DCT may therefore be expressed in jnd's as 

Each value of duk is an error in a particular frequency and block, expressed 

as a proportion of the just-detectable error in that frequency and block. Thus all 

the errors are now in the "common coin" of perceptual error, the jnd. 

6 Error Pooling 

To pool the errors in the jnd DCT we employ another standard feature of 

current vision models: the so-called pnorm (or Minkowski metric). It often arises 

from an attempt to combine the separate probabilities that individual errors will 

be seen, in the scheme known as "probability summation" (Graham, 1977 ; 

Robson, & Graham, 1981; Watson, 1979) . We pool the jnds for a particular 

frequency {ij) over all blocks k as 

Different values of the exponent p implement different types or degrees 

of pooling. When p=1, the pooling is linear summation of absolute values. When 

p =2, the errors combine quadratically, in what may be thought of as a measure 

of energy or standard deviation. When p= -(in practice, a large number such as 

100 will do), the pooling rule becomes a maximum-of operation: only the largest 

error matters. In psychophysical experiments that examine summation over 

space, a p of between 3 and 4 has been observed (Robson, et al., 1981). The 

exponent pis given here as a scalar, but may of course be made a matrix equal in 

size to the QM to allow differing pooling behavior for different DCT frequencies. 
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This matrix p G  of "pooled jnds" is now a simple measure of the visibility of 

artifacts within each of the frequency bands defined by the DCT basis functions. I 

call it the "perceptual error matrix." 

7 Optimization Rule 

This perceptual error matrix p i j  could be used for many purposes, but 

here we use it to compute a quantization matrix by means of a simple rule. We 

attempt to set each entry in pij to a constant target value w. The intuition here is 

that each entry in the matrix p i j  corresponds (at least monotonically) with the 

visibility of a particular class of artifact: that of the corresponding frequency 

(basis function). We assume that these visibilities are independent. We therefore 

attempt to set all artifact classes to a particular level of visibility. To do otherwise 

would be to favor or penalize one sort of error over another, which would be 

inappropriate since all are expressed in common units of visibility. It can be 

shown that this rule is equivalent to assuming that the pooling exponent within 

the perceptual error matrix is infinite. 

8 Results 

Using the rule described above and various standard optimization 

methods, it is possible to calculate for a given image either the quantization 

matrix that yields a particular perceptual error, or which minimizes the 

perceptual error for a given bit-rate. We have applied these techniques to a 

number of standard digital images and find that they yield consistently better 

apparent quality than standard techniques. One example is given in Fig. 1. 
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Image-Independent Image-Dependent 

Figure 1. The Lena image (Weber, 1983) of 2562 pixels compressed to 0.25 

bit /pixel using image-independent and image-dependent JPEG techniques. 

From the standpoint of computational complexity, this algorithm adds 

only a modest amount to the cost of JPEG image compression. All optimization 

takes place in the DCT domain, so no additional forward or inverse DCTs are 

required. The DCT mask is computed only once, and consists of a few 

calculations on each DCT pixel. The estimation of the quantization matrix 

requires a maximum of ten (and probably many fewer) iterations, each of which 

consists of a modest number of simple operations on each DCT pixel. It is 

certainly a smaller burden than requiring the user to repeatedly compress, 

reconstruct, and visually asses the result. 
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