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Computing human optical point spread functions

Andrew B. Watson

There is renewed interest in the role of optics in human
vision. At the same time there have been advances that
allow for routine standardized measurement of the
wavefront aberrations of the human eye. Computational
methods have been developed to convert these
measurements to a description of the human visual
optical point spread function (PSF), and to thereby
calculate the retinal image. However, tools to
implement these calculations for vision science are not
widely available or widely understood. In this report we
describe software to compute the human optical PSF,
and we discuss constraints and limitations.

Vision begins with a retinal image formed by the
optics of the eye. Many important aspects of visual
performance, such as acuity and contrast sensitivity,
are highly dependent upon the state of the visual optics.
To model this performance, or spatial vision more
generally, we must be able to compute the retinal image
for a given source image and a given state of the eye
optics (Watson & Ahumada, 2008, 2012).

The shape of the wavefront error at the exit pupil
defines the optical performance of any optical system,
including the human eye (Goodman, 2005). This error
is usually described as a collection of wavefront
aberrations, and standardized methods to describe
these aberrations have been developed (Thibos, Ap-
plegate, Schwiegerling, & Webb, 2002). The wavefront
error function (commonly “wavefront aberration”)
over the pupil is characterized as the sum of a set of
weighted Zernike polynomials

wx'y) = 3 ) (1)
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where x” and )’ describe coordinates relative to the
pupil center and normalized by the pupil radius. Each
polynomial z" is indexed by an order » and a frequency
m. The collection of weights, or Zernike coefficients ¢/,
usually expressed in micrometers, serve as the standard
description of the aberrations.
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The wavefront aberrations can be used to compute
the optical point spread function (PSF; Dai, 2008;
Goodman, 2005; Mahajan, 2013). To do this we first
define the complex-valued generalized pupil function g,

) = (' e | () 2)

The real-valued function p is the pupil function that
describes transmission through the pupil. It may be
defined as 1 within the pupil area and 0 elsewhere, but
may also be used to describe variable transmission as a
function of position (apodization), such as due to the
Stiles-Crawford effect (Atchison & Scott, 2002; Met-
calf, 1965; Stiles & Crawford, 1933).

The PSF for incoherent light is then given by the
squared modulus of the Fourier transform of the
generalized pupil function,

h(x,y) = ||Flg(x', ]I (3)

Equipped with the PSF it is then possible to compute
the retinal image r(x,y) as the convolution of the source
image s(x,y) and the PSF,

r(x,3) = h(x,y)xs(x, ). (4)

These basic principles relating wavefront aberrations
to the PSF are well known (Dai, 2008; Goodman, 2005;
Mahajan, 2013) and were first introduced to compu-
tation of retinal images by Artal (1990). Methods to
scale Zernike coefficients from one pupil size to another
were developed by Schwiegerling (2002) and refined by
others (Bara, Arines, Ares, & Prado, 2006; Dai, 2006;
Diaz, Fernandez-Dorado, Pizarro, & Arasa, 2009;
Janssen & Dirksen, 2006; Mahajan, 2010). Methods to
compute the polychromatic PSF from monochromatic
data have also been developed (Artal, Santamaria, &
Bescos, 1989; Coe, Bradley, & Thibos, 2014; Marcos,
Burns, Moreno-Barriusop, & Navarro, 1999; Raviku-
mar, Thibos, & Bradley, 2008; Van Meeteren, 1974).

In this report we describe software to compute
human optical PSFs from measurements of wavefront
aberrations. The software is written in the Mathematica
programming language (Wolfram Research, Inc.,
2013). The software, in the form of a Mathematica
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notebook, is provided as a supplement to this report.
We also provide in the notebook a database of
wavefront aberrations of 200 healthy young eyes
(Thibos, Hong, Bradley, & Cheng, 2002). Finally we
also provide a demonstration that illustrates effects of
parameter selection on computation of the PSF. These
supplementary files can be viewed with the free
Wolfram CDF player (http://www.wolfram.com/
cdf-player/).

An example

To motivate the subsequent developments, we
provide a very brief example of the use of this software.
We begin with a list of 12 Zernike coefficients,

zc=1{{2,-2,-0.0946},{2,0,0.0969}, {2,
2,0.305},{3,-3,0.0459},{3,-1,
-0.121},{3,1,0.0264},{3,3,-0.113},
{4,—4,0.0292},{4,-2,0.03},{4,0,
0.0294},{4,2,0.0163},{4,4,0.064}};

We compute a PSF,

psf = ZernikePointSpread[zc];

We have an image of the letter “E” in the Sloan font
with a height of 10 arcmin, corresponding to acuity of

20/40.

ImagePlot[letter]

arcmin
o

-154L . . . . . .
-1%5 -10 -5 0 5 10 15
arcmin

We convolve the PSF with the letter image, and
display the result,

blurredletter = ImageConvolve[letter,
Wrap [psf]]

and display the result
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ImagePlot[blurredletter]

arcmin
o
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-15 -10 -5 O 5 10 15
arcmin

We do not attempt a thorough introduction to
Mathematica here, but instead introduce a few
concepts and notations that will be useful in under-
standing the subsequent examples (Wolfram Research
Inc., 2013). We assume the reader is familiar with the
essentials of digital images and filtering. A readable
introduction to the subject is provided by Bracewell
(2003).

Mathematica notebooks, input, and output

Mathematica code usually exists in notebooks, which
are digital documents much like a word-processing file.
Mathematica input usually consists of typed expressions.
When evaluated (by means of Shift-Enter), the output
consists of printed numbers, expressions, graphics, or
other actions. Here we show input as bold courier text,
and printed output as normal courier.

Lists

In Mathematica lists are enclosed by curly braces.
Arrays are represented by lists of lists. Arrays use “row
major” ordering, meaning each sublist is a row. Here is
an example of an array with two rows each of three
elements.

array={{0, .25, 1}, {.5, 1, .3}};

A value within an array is specified by indexing its
row and column.

array[[1,2]]

0.25
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Pure functions

We make frequent use of a Mathematica program-
ming device known as a pure function. This allows the
construction of a temporary function made from
existing components. It is signaled by an & at the end of
an expression and a dummy variable is denoted by #. In
this example

(1H2) &[7]
9

the pure function just adds 2 to its argument.

Images

Images are represented here by two-dimensional (2-D)
rectangular arrays of numbers, expressed as Mathema-
tica arrays, as described above. We adopt the convention
that the first row is the bottom of the image, and that
dimensions are given in the order {width,height}. To
map from pixel coordinates to degrees of visual angle, an
image also has an implicit visual resolution, in horizontal
and vertical pixels/degree. The implicit size {width,
height} in degrees is the product of dimensions in pixels
and the visual resolution. In the introductory example
above, {width,height} = {64, 64} pixels and {width,
height} ={1/8, 1/8} degrees. The spatial resolution of the
image is thus 512 pixels/degree.

Image DFT

The Discrete Fourier Transform (DFT) of an image is
also a rectangular array, of the same dimensions as the
original image, in which each entry is a complex number
that represents the magnitude and phase of a Fourier
component of the image. Just as the image has a spatial
resolution in samples/degree, the DFT has a spectral
resolution in samples/cycle/degree. The spectral resolu-
tion is equal to the image size in degrees. The one-
dimensional spacing between samples in the DFT is the
inverse of the spectral resolution (cycles/degree/sample).
Software to compute the DFT is widely available.

Wrapped images

In mapping between arrays and image or DFT
coordinates, it is often necessary to represent both
positive and negative coordinates. For example, the
DFT must represent both positive and negative
frequencies, and the PSF must represent both positive
and negative coordinates relative to its center. In such
cases it is common to shift (rotate or scroll or wrap)
each row and column so that the sample corresponding
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to the origin, or coordinate {0,0}, is the first pixel in the
array. For an even dimension, this means rotation to
the left by n/2 where n is the width or height. For an
odd dimension, it means rotating by (n—1)/2. This
“wrapped” format is also expected as input, and
produced as output, by most DFT software, so that the
origin is located unambiguously (Voelz, 2011). We
provide the Wrap function to perform this operation.

Image filtering

An optical filter may be represented by the PSF or by
the optical transfer function (OTF), which is the DFT
of the PSF. Filtering of an image may be achieved by
convolution between the image and the PSF, or by
multiplication of the image DFT and the OTF,
followed by an inverse DFT (Bracewell, 2003). The
OTF is generally complex. The absolute value, or
modulus, of the OTF is the modulation transfer
function (MTF).

Zernike coefficients

We represent the Zernike coefficients for an eye by a
list of triples of the form {n, m, ¢} where n is the order,
m is the frequency, and c is the coefficient. The
coefficients can also be indexed by a single integer mode
(Thibos, Applegate, et al., 2002). This is useful when
coefficients are to be plotted as a function of mode (see
ZernikeMode and ZernikePlot below).

Example Zernike coefficients

We begin with a set of Zernike coefficients. These are
from right eye #1 at 6 mm from the database discussed
below (ThibosHongBradleyChengData; Thibos,
Hong et al., 2002), from order 2 to order 6.

TestCoefficients

{{2,-2,-0.094¢} ,{2,0,0.0969 ,{ 2,2,
0.305 ,{3,-3,0.0459%9 ,{3,-1,-0.121},
{3,1,0.0264} ,{3,3,—-0.113} ,{ 4,4,
0.0292} ,{4,-2,0.03} ,{4,0,0.0294},
{4,2,0.0163},{4,4,0.064} ,{5,-5,
0.049% ,{5,-3,-0.0252} ,{5,-1,
0.00744} ,{5,1,0.00155} ,{ 5,3,
—-0.0068¢} ,{5,5,0.0288} ,{ 6,—6,
0.00245} ,{6,—4,0.00185} ,{6,—-2,
0.00122} ,{6,0,-0.00755} ,{ 6,2,
—0.000693} ,{6,4,0.000551} ,{ 6,6,
—0.0148}}
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These can be plotted against the single number index
mode, with the function ZernikePlot.

ZernikePlot[TestCoefficients]
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The Zernike image

Each Zernike coefficient describes the order, fre-
quency, and magnitude of a single Zernike polynomial
basis function defined over the unit pupil. The sampled
image of a single Zernike polynomial can be computed
with the function ZernikeImage.

zi = ZernikeImage[2, —2, 63.1];

The first two arguments are the order and frequency.
The third argument is the radius of the pupil in pixels.
This radius may be a real number. The implications of
this choice will be discussed later, but in general a larger
value will yield greater accuracy. The resulting image
size (rows or columns) in pixels is
2 Ceiling[radius]. Ceiling returns the smallest
integer greater than or equal to its argument. Because
we are assuming circular pupils, the result is always a
square image. We display the image.

AberrationPlot[zi]

um

We can also display the Zernike image with pseudo-
color
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AberrationPlot[zi, PseudoColor—True]

um

2

Table of Zernike images

We can also show a table of all Zernike images up to
a specified order. The picture shows all the Zernike
polynomial basis functions, up to order 6, arranged by
order and frequency.

ZernikeTable[6]

Order
w

6 5 4 3 -2 10 1 2 3 4 5 6
Frequency 3
The Wavefront image
The total wavefront aberration image is the sum of
Zernike polynomial images, weighted by their coeffi-
cients. This can be computed with
WaveAberrationImage. We supply a list of coeffi-

cients and a pupil radius in samples.

wai = WaveAberrationImage
[TestCoefficients, 63.1];

The image can be displayed as a grayscale image,

AberrationPlot[wai]
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The optical PSF is always positive, and its integral is
AberrationPlot[wai always 1, since it describes the redistribution of light.
PseudoColor—True
] Total [psf, 2]
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Computing the PSF and OTF

The PSF for a set of coefficients is created with the
function ZernikePointSpread. We create a PSF for
the example set of aberrations.

psf = ZernikePointSpread
[TestCoefficients] ;

The returned PSF is a 2-D array of real numbers in
wrapped form. We plot the PSF using the function
PSFPlot. This shows the dimensions of the PSF in
arcmin. The small fiducial line at the bottom is 5 arcmin
in length. This is the width of a test letter for an acuity
of 20/20. We also note that by default PSFPlot
stretches and reverses the contrast of the PSF: Largest
values are plotted as black, the smallest values (usually
zero) as white. This permits much easier visualization
of the PSF.

PSFPlot[psf]

1.

By default the function ZernikePointSpread
returns a PSF. If we specify the option OTF—True, it
will instead return the OTF. If OTF—"Both", it will
return a list {PSF, OTF}. Here we illustrate computing
both the PSF and the OTF.

{psf,otf} = ZernikePointSpread
[TestCoefficients, OTF—"Both"]

In general, the OTF is complex. The MTF is the
absolute value of the OTF. We show the MTF, using
the function MTFPlot. We magnify by 2 to see more
detail. The black bar at the bottom of the plot indicates
+30 cycles/degree.

MTFPlot[otf, Magnification—2]

100+

50+

cycles/degree
(@)

—-50+

—-100+

“100 50 0 50 100
cycles/degree

We can also view the radial MTF. The function
RadialMTF provides a log-log plot of the MTF as a
function of radial frequency, averaged over polar angle.
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RadialMTF[otf] Wavelength
This is the monochromatic wavelength in nm for
; which the coefficients are defined. Typically, this is the
wavelength used to measure the aberrations. Below we
0-50 will show how aberrations at other wavelengths can be
computed.
§ 010 PupilDiameter
0.05 This is the pupil diameter in mm for which the
coefficients are defined. Usually this is the pupil
diameter at which the coefficients were measured.
0.01 Below we will show how aberrations may be scaled for
oo o0 100 smaller pupils.
cycles/deg

The radial plot can also be produced with linear
axes.

RadialMTF[otf, LinearPlot—True]

Gain

O 2b 4‘0 éO 8‘0 160 1éO
cycles/deg

ZernikePointSpread options

The function ZernikePointSpread has a number
of options.

Options|[ZernikePointSpread]

{ Verbose—False, Wavelength—555,
PupilDiameter—6, OTF—False,
PupilSamples—Automatic,
ImageSamples—256, Degrees—0.5,
Apodization—False,
DerivedParameters

—{ PupilSamples—62.8947}}

In the previous example the options were assigned
their default values. Here we provide some discussion
of the most significant options.

PupilSamples

This is the diameter of the pupil in samples. It
contributes to the accuracy of the computed PSF. This
will be discussed further below.

ImageSamples

This is the size of the PSF image in samples. Because
the image is square, this is both the number of rows and
columns. It contributes to the accuracy of the
computed PSF. This will be discussed further below.

Degrees

This is the size of the PSF image in degrees. Because
the image is square, this is both the width and height. It
contributes to the accuracy of the computed PSF. This
will be discussed further below. Here is an example in
which the size is 0.25°. Because we are no longer using
the default of 0.5°, we also must specify the image size
to PSFPlot.

PSFPlot[ZernikePointSpread|
TestCoefficients, Degrees—.25],
Degrees— .25]

N
[]

arcmin
o

-6 -4 -2 0 2 4 6
arcmin
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DerivedParameters

The user will typically specify the PSF size in
degrees, in which case PupilSamples will be deter-
mined automatically, and the computed value will be
expressed here. The user may however select
PupilSamples directly, in which case the Degrees
option will be computed automatically and expressed
here.

Apodization

Apodization refers to nonuniform transmission
through the pupil. In ZernikePointSpread, by
default Apodization—False. Alternatively a
Gaussian standard deviation in millimeters can be
supplied. Apodization is discussed more extensively
below.

Verbose

When Verbose—True, ZernikePointSpread
provides a set of diagnostic images and statistics.

Our purpose in computing the PSF is usually to
obtain the retinal image of some object. Here we

Watson

illustrate the basic steps. First we create an image of a

single letter, explicitly specifying the image dimen-

sions in pixels and in degrees. We specify the letter
size to be 10 arcmin, the size of the 20/40 line on an
eye chart.

fontsize =10/60;

imagesize = 256;

degrees = .5;

fontsizepixels = fontsize imagesize/

degrees;

letter = ImageReflect [LetterImage["Z",

ImageSize—imagesize,
FontFamily—"Sloan,"
FontSize—fontsizepixels]];

We create a psf.

psf = ZernikePointSpread
[TestCoefficients];

We convolve the letter image and the PSF. The Wrap
function shifts the origin of the PSF to the center of the
array, as expected by the Mathematica function
ImageConvolve (see Wrapped images).

blurredletter = ImageConvolve[letter,
Wrap[psf]]’

We display the original and blurred letters.

Row[ImagePlot /@ {letter,
blurredletter}]

arcmin
o

arcmin

-5 -10 -5 O 5 10

arcmin

Note that because the PSF merely redistributes light,

the integral of input and output images must be
(approximately) the same.

15

-1%5 -10 -5 0 5 10 15

arcmin

Total [ImageDatal[#],2]& /@ {letter,
blurredletter}

{61167.9, 61174.1}
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Computing the diffraction-limited

PSF and MTF

As a useful test and an instructional example we can
compute the PSF and OTF for the case in which there
are no aberrations, and the optics is limited only by
diffraction. We supply an empty list of Zernike
coefficients, and set the pupil diameter to 2 to increase
the prominence of diffraction. This will compute the
monochromatic result at the default wavelength of
555 nm.

{psf, otf} = ZernikePointSpread[{},
PupilDiameter—2, OTF—"Both"];

We plot the PSF. We magnify by 4 to see more detail.

PSFPlot[psf, Magnification—4]

arcmin
o

-3 -2 -1 0 1 2 3
arcmin

We can also look at a cross section through the peak.

ListLinePlot[Wrap[psf[[1]]]]

0.012}
0.010}
0.008}
0.006 |
0.004 |

0.002

0.000 T n : T — 3
0 50 100 150 200 250

We can also view the radial MTF with linear axes.
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RadialMTF[otf, LinearPlot—True]

Gain

O 2‘0 4b 60 80 100 120
cycles/deg

It is well known (Goodman, 2005) that the cut-off
frequency (the so-called diffraction limit) for a given
pupil diameter and wavelength is given in cycles/degree
by the formula

10%7 pupil
—_— 5
1804 (5)

which in this case equals 62.9 cycles/degree, which
agrees with the figure.

Chromatic aberration

To compute a polychromatic PSF it is useful to have
a function that describes the defocus induced by
longitudinal chromatic aberration. We have imple-
mented a published formula (Thibos, Ye, Zhang, &
Bradley, 1992) that describes defocus in diopters at a
wavelength 4 for an eye in focus at 589 nm,

0.63346
T BT (6)
21073 —0.2141

This is implemented by ChromaticDefocus, as in the
following example.

Dsgo(2) = 1.68524 —

ChromaticDefocus[500]
—0.53043

For an eye in focus at Ay, the defocus at other
wavelengths 4 will be

D(Z, 40) = Dsgo(4) — Dsso(4o) (7)

This is implemented by ChromaticDefocus, with a
second argument that is the wavelength in focus, as in
the following example,

ChromaticDefocus[500,555]
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—0.357471

This can be converted to a Zernike defocus coefficient
in micrometers by the formula

D()u, ;Lo)pz
16v3

where p is the pupil diameter in mm. This is
implemented by ChromaticDefocusZernike, as in
the following example

(®)

0 _
(/2_

ChromaticDefocusZernike[500,555]
—0.464368

A plot of this function is shown below, with an arrow
marking the wavelength in focus (555 nm).

Plot[ChromaticDefocusZernike
[wavelength, 5557,
{wavelength, 400, 700}
, Epilog— {Red, Arrow[{ {555, -2},
{555, 0}}1}
, FrameLabel— {"Wavelength (nm)”,
"cg (microns) "}
, GridLines—Automatic,
Evaluate@ZernikeStyles]

0.5F /
0.0F .
_ 1
5
5 -0.5
E
o -1.0
-15}
-2.0

400 450 500 550 600 650 700
Wavelength (nm)

Wavefront aberrations are typically recorded for a
single wavelength, which allow computation of a
monochromatic PSF, and thereby the retinal image of
a monochromatic object. To compute the retinal
image of a polychromatic object, we need to compute
a polychromatic PSF (Artal et al., 1989; Marcos et al.,
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1999; Nestares, Navarro, & Antona, 2003; Ravikumar
et al., 2008; Van Meeteren, 1974). The general
approach is to consider a polychromatic source image
as the sum of a set of monochromatic images, and to
filter each by a PSF for the appropriate wavelength.
In one special case, the source image is spectrally
homogeneous, meaning that the image varies only in
intensity, not in its spectral composition. Examples
are an achromatic object illuminated by a single
source, or a grayscale image. In that case a
polychromatic PSF can be constructed as a sum of
monochromatic PSFs, and the single intensity image
filtered accordingly.

To compute polychromatic PSFs we must be able to
compute a PSF for an arbitrary wavelength, given set
of wavefront aberrations recorded at one particular
wavelength. To do this, we first assume that only the
defocus Zernike coefficient varies with wavelength, due
to longitudinal chromatic aberration (Marcos et al.,
1999). Then we compute the relevant defocus, assuming
a particular in-focus wavelength, and using the
function ZernikeChromaticDefocus. In the fol-
lowing sections we illustrate the use of
ZernikePointSpread to compute polychromatic
PSFs under various scenarios.

Multispectral PSFs

In the previous examples, we created the PSF for
monochromatic light at 555 nm. If the observer were
viewing a multispectral image, consisting of the sum of
several monochromatic subimages (bands), then we can
compute the appropriate set of PSFs to filter each band
separately. In this example, we assume three bands at
400, 555, and 700 nm, and assume that the eye is in
focus at 555. The second argument is a list of the
wavelengths. Note that we have not altered the default
option Wavelength—555, so that remains the
wavelength in focus.

psfs = ZernikePointSpread
[TestCoefficients, {400, 555, 700}] ;

We plot the PSFs. Note the large defocus at 400 nm,
caused by chromatic aberration. These three PSFs
could now be used to convolve the three monochro-
matic bands, and the sum would represent the resulting
retinal image.

Row [PSFPlot[#,ImageSize—160,
FrameLabel —None,FrameTicks—None] & /
Q@ psfs]
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Polychromatic PSF

If the eye is viewing an image that is spectrally
homogeneous (it varies only in intensity, not spectral-
ly), then we can compute an appropriate single PSF for
the relevant spectrum. We do this by representing the
spectrum by a set of sampled wavelengths and
corresponding weights. We then compute a set of PSFs,
one for each wavelength, with chromatic aberration, as
in the example above. Then we multiply by the
corresponding weights and sum them up.

Here is an example spectrum. The weights add up to
one.

spectrum = { {455,0.00477}, {475,
0.0727},{495,0.175},{515,0.22}, {535,
0.198},{555,0.143},{575,0.0896},
{595,0.0502},{615,0.0258}, {635,
0.0123},{655,0.00558},{675,0.0024}}

We plot it.

ListLinePlot[spectrum,ZernikeStyles]

0.20F

0.15}

weight

0.10F

0.05¢

0.00t

500 550 600 650
nm

First we will create the individual PSFs separately,
for illustration, and plot them labeled by their
wavelengths.

wavelengths = First /@ spectrum;

psfs = ZernikePointSpread

[TestCoefficients,wavelengths] ;

figs = PSFPlot [#, ImageSize—100,

FrameLabel—None,FrameTicks—None] & /

Q@ psfs;

Grid[Partition[MapThread|
Labeled[##1,Top, LabelStyle—{12,
FontFamily—"Helvetica"}]é&

, {figs ,wavelengths}], 6],
Spacings—0]
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Combining these with appropriate weights, we get
the single PSF.

weights = Last /@ spectrum;
psf =Total [psfs weights] ;
PSFPlot[psf]

arcmin

arcmin

Here is how to create the polychromatic PSF in a
single call.

psf = ZernikePointSpread
[TestCoefficients, spectrum] ;

Polychromatic white light PSF

In some cases the source image may be that of an
achromatic object illuminated by white light, or a
grayscale image. For this special case we employ as a
spectrum the CIE photopic luminosity function,
sampled with some spacing, and centered on the

wavelength in focus (555 nm by default). The user
specifies the spacing in nm. For comparison, we will
compute both the monochromatic and the white light
version. In the second case, the second argument is the
spacing (nm) of wavelength samples around the in-
focus wavelength.

otfl = ZernikePointSpread
[TestCoefficients, OTF—True] ;

otf2 = ZernikePointSpread
[TestCoefficients, 20, OTF—True] ;

We compute the radial mean MTF for each, and plot
them. We see that inclusion of the other wavelengths,
and their chromatic aberration, significantly reduces
gain at the higher spatial frequencies.

RadialMTF[{otfl,otf2},

PlotStyle— {Red,Gray},
PlotLegends—Placed[{"555”,
"white"}, {Right,Top}]]

— 555
0.50 T
— white
C
‘T 0.10
o}
0.05
0.01
5 10 50 100

cycles/deg
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Trichromatic PSFs

In modern electronic displays, color images are
produced by combining three (or more) images, each
created with a specific primary. The individual images
are spectrally homogeneous, but their individual
spectra may be broad band. In this case, the spectrum
argument to ZernikePointSpread is a list of spectra,
and the result is a list of PSFs (or OTFs, or {PSF,
OTF} pairs, depending on the OTF option).

Here is an example of spectra for three bands,
nominally red, green, and blue. These are approxima-
tions to spectra of organic light-emitting diode (OLED)
display primaries. Each has weights that sum to 1.

12

0.20F

0.15}
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0.10F

0.05¢

0.00k

450 500 550 600 650 700
nm

We compute both PSF and OTF for the three

primaries.

spectra= {{535,0.00986},{555,0.088},
{575,0.163},{595,0.19},{615,0.176},
{635,0.143},{655,0.106}, {675,
0.0741},{695,0.0493}},{{455,
0.00477},{475,0.0727},{495,0.175},
{515,0.22},{535,0.198},{555,0.143},
{575,0.0896},{595,0.0502}, {615,
0.0258},{635,0.0123},{655,0.00558},
{675,0.0024},{695,0.000991}}, {{415,
0.000458},{435,0.0503},{455,0.157},
{475,0.217},{495,0.204},{515,0.154},
{535,0.0994},{555,0.0578}, {575,
0.031},{595,0.0156},{615,0.00744},
{635,0.0034},{655,0.0015}, {675,
0.000641},{695,0.000266}}1};

We plot them.

ListLinePlot[spectra,

PlotStyle— {Red,Green,Blue},
FrameLabel— {"nm”, "weight"},
ZernikeStyles]

tri = ZernikePointSpread
[TestCoefficients, spectra,
OTF—"Both"];

The result has the following dimensions.
Dimensions|[tri]
{3,2,256,256}
For clarity, we rearrange and name the parts.
{psfs,otfs} =Transpose[tri];
We look at the PSFs.
Row [MapThread[
PSFPlot[#1, ImageSize—160,
FrameLabel—None, FrameTicks—None,
PlotLabel—Style[ff2, #3]1& ,

{tri[[All,l]], {"R,” “G,” “B"},
{Red, Green, Blue}}]]

U
>
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We compare the radial MTFs. The green primary
has the best gain, consistent with the most compact
PSF.

RadialMTF[otfs, PlotStyle—{Red,
Green, Blue}]
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5 10 50 100
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To illustrate the use of the trichromatic PSF to
compute the trichromatic retinal image, we again create
a letter image. The letter is again 10 arcmin in size, but
this time the image is only 0.25°.

fontsize =10/60;
imagesize =128;
degrees = .25;

Watson 13

fontsizepixels = fontsize imagesize/

degrees;

letter = LetterImage["2”,

ImageSize—imagesize,

FontFamily—"Sloan”,
FontSize—fontsizepixels]

We blur this image by each of the three trichromatic
PSFs, creating three blurred images that represent the
red, green, and blue color channels

blurredcolorletter =
ImageConvolve[letter,Wrap[#]]& /@
psfs;

We look at the individual blurred color channels.

Row|[Framed /@ blurredcolorletter]

We simulate the blurred color image by com-
bining the three blurred color channels as an RGB
image.

Framed @
ColorCombine [blurredcolorletter ,
"RGB n ]
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Here we apply the PSF to a more complicated and
colorful image. This image is 160 x 107 pixels, or 0.312°
x 0.209° (512 pixels/°).

image

We use the Mathematica functions
ColorSeparate and ColorCombine to separate the
three color channels, and to recombine them after
filtering.

ColorCombine [MapThread

[ImageConvolve,
{ColorSeparate[colorimage],
Reverse[Wrap[#]]& /@ psfs}]]
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Database of 200 eyes

Wavefront aberration data for 200 eyes from 100
young healthy observers measured at 633 nm and
several pupil diameters (Thibos, Hong et al., 2002) are
available in the object ThibosHongBradley
ChengData. The data structure consists of a list
indexed by pupil diameter, observer, eye, and mode.
The first index corresponds to pupil diameters of 3, 4.5,
6, and 7.5 mm. The third index is in the order left eye,
right eye. The number of observers varies with pupil
diameter: 70 for 7.5 mm and 100 for the rest. The
number of modes varies with pupil diameter from 15 to
66. Each coefficient is represented in our standard
format as a triple {n,m,c} where n is the order, m is the
frequency, and c is the coefficient. Additional docu-
mentation is available in the supplementary notebook
Zernike.nb.

We can select the data for the right eyes of the first
24 observers, at a 6-mm pupil, as follows. In the result
each record consists of 36 Zernike coefficients, up to
order 7.

eyes = ThibosHongBradleyChengData[[3,
i; 24, 2115

We compute the white light PSF and OTF for each eye.
{psfs,otfs} =
Transpose [ZernikePointSpread[#, 20,
OTF — “Both"]& /@ eyes];

We display the PSFs.
Grid[Partition[PSFPlot[#,

ScaleMark—False, Frame—False]& /@
psfs,6]]


http://
http://
http://www.journalofvision.org/site/misc/cdf/JOV-15.2.26.html
http://www.journalofvision.org/site/misc/cdf/JOV-15.2.26.html
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We can also show the radial MTFs for these 24 eyes,
which illustrates the variability among a group of
young, healthy, well-corrected eyes.

RadialMTF[otfs]

Gain

5 10
cycles/deg

50 100

This database is very useful for simulating the
statistical distribution of performance in a population
of observers (Watson, 2013; Watson & Ahumada,
2012).

Scaling Zernike coefficients to a

different pupil size

Zernike coefficients are measured over a pupil of a
specific diameter. Measurements at several pupil

diameters for the same eye may be available. It is also
possible to numerically transform Zernike coefficients
from one pupil diameter to another (usually smaller)
diameter (Bara et al., 2006; Dai, 2006; Diaz et al.,
2009; Janssen & Dirksen, 2006; Mahajan, 2010;
Schwiegerling, 2002). We make use of the formula of
Dai (2006) for the new coefficients b based on the old
coefficients a,

0—n)/2

(
ar + Z <a;"+2i\/(n +2i+1)(n+1)
]

m __ .n
byl =r

i

Zl’zj (=)™ (n+i+)) >] )

R CENE I

where r is the ratio of new to old pupil diameters, o is
the highest order considered. The formulas of Diaz et
al. (2009) and Janssen et al. (2006) are equally valid;
we use Dai (2006) because it is a relatively simple
expression and it appears to be the fastest to compute
in our environment. We note that this formula can be
used to scale for smaller or larger pupils (ratios less
than or greater than 1), though the error is larger for
ratios greater than 1 (Bara, Pailos, Arines, Lopez-Gil,
& Thibos, 2014; Dai, 2011; Ommani, Hutchings,
Thapa, & Lakshminarayanan, 2014).

We provide the function ZernikeScalePupil to
scale coefficients for smaller or larger pupils. In this
example, we scale the TestCoefficients from their
original 6-mm pupil diameter to a new 3-mm diameter.
The second argument is the ratio of new to old pupil
diameters. We plot the old and new coefficients.
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zc = ZernikeScalePupil

[TestCoefficients,3/6];

ZernikePlot[ {TestCoefficients, zc},
PlotLegends—Placed[{"6mm”,"3mm"},
{Right,Top}]]
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We create the corresponding PSFs and OTFs.
{psfs, otfs} = Transpose[MapThread|

ZernikePointSpread[#1,
PupilDiameter—if2, OTF—"Both"] &,
{ {TestCoefficients, zc}, {6, 3}}11;

The 3-mm PSF is more compact and shows fewer

03 ! * 6mm] obvious aberrations.
3 mm
g 02p Row[PSFPlot /@ psfs]
g
*E 0.1F °
:% ° %o
% [ ) [ N ] ° . [ ] o R
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Likewise the radial MTF shows higher gain over
most frequencies for the 3-mm pupil diameter. 050
RadialMTF
[otfs, PlotStyle— {Red,Blue}, S 010
PlotLegends—Placed[{"6mm”,"3mm"}, ©
{Left,Bottom}]] 005
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Apodization refers to nonuniform transmission
through the pupil. A notable example is the Stiles-
Crawford effect (Stiles & Crawford, 1933). Although
this is an effect occurring at the level of the retina, it
may be regarded as effectively due to apodization at the
pupil (Metcalf, 1965). It has been modeled as a
Gaussian, with a standard deviation estimated at
around 3 mm under certain conditions (Atchison &
Scott, 2002). In ZernikePointSpread, by default
Apodization—False. Alternatively a Gaussian
standard deviation in millimeters can be supplied. In
this example we show the radial MTF for a 6-mm pupil
in white light with and without Gaussian apodization
with a standard deviation of 3 mm.

otfs = ZernikePointSpread

[TestCoefficients, 20,
Apodization—i, OTF—True] & /@
{False, 3.};

RadialMTF

[otfs, PlotStyle — {Red,Blue},
PlotLegends—Placed
[{"none”,"3 mm"}, {Right,Top}]1]

Apodization

0.50 — none

— 3 mm

[
'® 0.10
O
0.05
0.01
5 10 50 100
cycles/deg

Defocus and astigmatism are of interest in part
because they are aberrations that can be corrected with
spectacle lenses. We can easily compute PSFs and
OTFs with varying amounts of defocus or astigmatism.
For defocus we use the function
InverseEquivalentDefocus to compute the
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magnitude of the Zernike coefficient corresponding to
defocus. For example, for a 6-mm pupil and 1 diopter
of defocus,

c = InverseEquivalentDefocus[1l., 6]
1.29904

To update a list of coefficients we simply append the
defocus term, with the appropriate values of order,
frequency, and magnitude: {2,0,1.29904}. Note that it
does not matter whether a defocus term already exists
in the list (as it does here); the two terms will be
correctly combined by ZernikePointSpread.

Append[TestCoefficients, {2, 2, c}]

{{2,-2,-0.094¢} ,{2,0,0.0969} ,{ 2,2,
0.305 ,{3,-3,0.0459 ,{3,-1,-0.121},
{3,1,0.0264} ,{3,3,-0.113} ,{ 4,4,
0.0292} ,{4,-2,0.03} ,{4,0,0.0294},
{4,2,0.0163},{4,4,0.064} ,{5,-5,
0.0499 ,{5,-3,-0.0252} ,{5,-1,
0.00744} ,{5,1,0.00155} ,{ 5,3,
—-0.0068¢6¢} ,{5,5,0.0288} ,{ 6,—6,
0.00245} ,{6,—4,0.00185} ,{6,—-2,
0.00122} ,{6,0,—-0.00755} ,{6,2,
—0.000693} ,{6,4,0.000551} ,{ 6,06,
—0.0148} ,{2,2,1.3}}

To create the corresponding PSF we would simply
supply this new list to ZernikePointSpread. Here
we illustrate creation of a family of PSF and OTF, with
defocus proceeding from 0 to 2 diopters in steps of 1/2
diopter. We set Degrees — 1 to allow room for the
large PSF at the largest defocus.

result = ZernikePointSpread|
Append[TestCoefficients, {2, O,
InverseEquivalentDefocus[#, 6]1}],
Degrees—1l., OTF—"Both"] & /@
Range[0, 2, .5];

Now we plot the PSFs and radial MTFs.

Row[PSFPlot[#, Degrees—1,
ImageSize—100,
FrameTicks — {{—20, 0, 20}, None,
None, None},
FrameLabel—None] & /@ result[[All,
1111
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-20 0 20 -20 O 20 -20

Row[RadialMTF[#, Degrees—1,
ImageSize—100,
FrameTicks—{{1, 10, 50}, None, None,
None},
FrameLabel—None] & /@ result[[All,

2111

20 -20 0 20 -20 O 20

Turning now to astigmatism, we use a more general
function that allows the user to specify the defocus (in
diopters), the astigmatism (in diopters), and the angle
of the astigmatism (in radians). For example, 1 diopter
of defocus and 0.2 diopters of astigmatism at an angle
of 0.3 at a pupil diameter of 6 mm, would yield

SpheroCylindricalCoefficients[1.,

0.2, 0.3, 6]
{{2,-2,0.207},{2,0,1.3},{2,2,
0.303}}

The function returns a list of second order Zernike
coefficients that can then be supplied to
ZernikePointSpread. In the following example, we
show a sequence of PSFs and OTFs with constant
defocus (0.5 diopters) and increasing astigmatism at
angle 0. Astigmatism results in blur in one direction

50 1 10 60 1 10 50

defined by the angle, so the PSF gets broader in that
dimension, while the MTF gets narrower.

defocus =0.5; pupil = 6; angle=0.;
options = Sequence @@ {ImageSize—180,
FrameTicks— {None, Automatic}};
Grid[Transpose|[ ({psf, otf} =
ZernikePointSpread|[
SpheroCylindricalCoefficients
[defocus, #, angle, pupill],
PupilDiameter—pupil, OTF—"Both"];
{PSFPlot[psf, FramelLabel— {None,
“arcmin"}, options],
MTFPlot[otf, FramelLabel— {None,
“cycles/deg"},
Magnification—4, options]}
) & /@ {0, .1, .2}]]
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In the following example we fix the defocus, and vary
the angle of astigmatism. Note that the MTF is always
elongated orthogonal to the PSF.

Grid[Transpose|[ ({psf, otf} =
ZernikePointSpread|
SpheroCylindricalCoefficients
[defocus, astigmatism, #, pupil],
defocus =0.5; pupil = 6; astigmatism= PupilDiameter—pupil,
0.2; OTF—"Both"] ;
options = {PSFPlot[psf, FramelLabel— {None,
Sequence @@ {ImageSize—180, “arcmin"}, options],
FrameTicks— {None, Automatic}}; MTFPlot[otf, Framelabel— {None,
“cycles/deg"},
Magnification—4, options]}
) & /@ {0, Pi/8, Pi/4}]]
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WavefrontRMS

This computes the RMS error over the wavefront
represented by a set of coefficients, which is equivalent
to the RMS of the Zernike coefficients.

WavefrontRMS [TestCoefficients]

0.391534

EquivalentDefocus

This function computes the so-called equivalent
defocus (in diopters) of a single Zernike coefficient or a
set of coefficients. It effectively computes the defocus
term that would produce the same RMS error as the set
of coefficients. The second argument is the pupil
diameter.

EquivalentDefocus
[TestCoefficients, 6]

0.301403
InverseEquivalentDefocus
Given a defocus in diopters, this returns the value of
the Zernike coefficient corresponding to defocus (order
2, frequency 0). The second argument is the pupil
diameter.
InverseEquivalentDefocus[1l., 6]

1.29904

EquivalentDefocus
[InverseEquivalentDefocus[1l., 6], 6]

1.

SpheroCylindricalCoefficients

Given defocus, astigmatism, angle, and pupil diam-
eter, this returns the list of corresponding Zernike
coefficients.

SpheroCylindricalCoefficients|[1.,
0.2, 0.3, 6]

({2, -2, 0.207 ,{2, 0, 1.3}y,1{2, 2,
0.303}}

Watson 20

ZernikeMode

Zernike coefficients can also be indexed by a single
integer: the mode (Thibos et al., 2002a). Given an order
and a frequency, this returns the mode of a Zernike
polynomial.

ZernikeMode[3, —3]

6

Zernikelndices

Given a single index Zernike mode, this returns the
order and frequency of a Zernike polynomial.

ZernikeIndices[6]

{ 3/ _3}

Computation of the PSF image from Zernike
coefficients relies upon discrete sampled representation
of continuous functions, and is therefore subject to
sampling and aliasing errors. In general, to expedite
computation, we would like the PSF image to have as
few samples (pixels) as possible. But the considerations
below provide constraints on how small that number
can be.

While software implementations may differ, they
generally will include four important parameters: p —
the pupil diameter in mm, A — the wavelength in nm, d —
the PSF image size in degrees, and » — the PSF image
size in pixels.

Size of PSF

The first consideration is that ¢ must be large enough
to accommodate the PSF. For modest wavefront
aberrations, a value of 1/4 degree may be adequate. For
large aberrations, a larger PSF image will be required.
Here is an example for —4 diopters of defocus with a 6-
mm pupil:

c20=InverseEquivalentDefocus[—4., 6]

PSFPlot[ZernikePointSpread[{{2,0,
c20}}, Degrees—2], Degrees—2]
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Resolution of the PSF

The resolution of the PSF in pixels/degree is given by
n/d. That value should typically be large enough to
accommodate the spectral composition of the PSF.
Since the well-corrected OTF may extend up to 120
cycles/degree, it is advisable to set n/d to at least twice
this value. In ZernikePointSpread, the default
values of d (Degrees) and n (ImageSamples) are 0.5 and
256, yielding 512 pixels/degree.

Resolution of OTF

A second consideration is that the spacing of samples
in the OTF is 1/d. Likewise the lowest frequency
represented (apart from zero) is 1/d. Thus if an accurate
and fine-grained representation of the OTF or MTF is
desired, or if one is interested in behavior at low spatial
frequencies, a relatively large value of ¢ must be used.
In the following example, we compute the OTF from
the coefficients of the right eye of observer 10, using a
PSF size of 0.25 degree or 2.0 degrees. As can be seen,
several features of the MTF are evident only for the
larger value.

zc = ThibosHongBradleyChengData[[3,
10, 2]1;
otfs = ZernikePointSpread|[zc,
Degrees—if,OTF—True,
ImageSamples—1024]& /@ {.25,2};
Show [Reverse@MapThread
[RadialMTF [#1,PlotStyle—i2,
Degrees—if3] &,
{otfs, { {Red,Dashed},Blue}, {.25,
2}1]
,Graphics[{Text["Degrees”,
Scaled[{.8,.9}11,
Red,Text["0.25”,Scaled[{.8,
-711,
Blue,Text["2.0”,Scaled[{.8,
.8}111}11
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Resolution of aberration image

From the preceding parameters, another parameter
may be derived: s — the pupil diameter in samples:

10%7dp
= . 1
1804 (10)

The parameter s determines the resolution with which
the wavefront aberration image is sampled. This is of
course closely related to the resolution of the OTF
discussed above. Since A and p are not free parameters,
we see from Equation 10 that s is controlled by d. Thus
depending on the application, we want d large enough
to provide an accurate description of the OTF. We
provide a function PupilSamples to compute
values, and show examples for two wavelengths below.
To compute a polychromatic PSF, we compute a
linear combination of monochromatic PSFs, and thus
we are concerned about the worst case. The largest
value of s occurs for the smallest wavelength, so the
worst case (requiring the most samples) is at 400 nm.

Avoiding wrap-around errors

From Equation 3 we see that the PSF is obtained
through Fourier transformation of the generalized
pupil function. In software, that function is represented
by a finite discrete sampled image, and is transformed
using the DFT. In two dimensions the DFT assumes
toroidal boundaries, meaning the image can be
considered the surface of a torus, with upper and lower
edges, and right and left edges connected. This means
that the DFT will produce “wrap-around” errors,
unless the generalized pupil image is padded with zeros.
This padding is reflected in the difference between s (the
number of pupil image samples) and # (the number of
PSF image samples). In general, we recommend that »
be at least twice s. We provide a function to compute
that number: SafeImageSamples. In the following
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example, we show the radial MTF for three values of n:

64, 128, and 256. Note the very large discrepancy for
64, and the smaller but significant discrepancy for 128
(at the highest frequencies).

samples = {64,128,256};
otfs = ZernikePointSpread
[TestCoefficients,
OTF—True,ImageSamples—i]& /@
samples;
RadialMTF[otfs,PlotStyle— {Blue, Red,
{Dashed,Green}},
PlotLegends — Placed[samples,
{Left,Bottom}]]

0.50

c
© 0.10
[©)

0.05

5 10 50 100
cycles/deg

Maintain consistent spatial resolution

Beyond the constraints noted above, if the PSF is
created in order to filter a source image, it is essential
that the PSF and the image have the same visual
resolution, in pixels/degree. To illustrate, we create
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two PSFs, with different pixel and degree dimensions,
but the same visual resolution. We use each to
convolve an image and show that the result is nearly
the same.

psfs = MapThread[ZernikePointSpread
[TestCoefficients,
Degrees—ifl, ImageSamples—if2] &,
{{0.25,0.5},{128,256}}];
Row|[ImageConvolve[letter,
Reverse[Wrap[#]]] & /@ psfs]

Demonstration of effects of parameters

We have provided as a supplement to this article a
tool that allows one to explore the effect on the PSF
and OTF of various parameters, as shown in the figure
below. After the user selects a set of parameters, the
PSF, the retinal image of a letter, and the radial MTF
are shown. Some of the statistics of the result are also
shown. When the safety ratio n/s is less than 2, it is
shown in red as a warning.
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Human Optical PSF Calculator

15 15 1
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0 prim 0 l 3 0.10
(0]
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-10 -10
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-5 .10 -5 0 5 10 15 -15 -10 -5 O 5 10 15 05 1 5 10 50 100
arcmin arcmin cycles/deg
Samples across pupil (s) = 94.3421
Pixels/degree (n/d) = 512
Safety ratio (n/s) = 2.71353
Safe image samples = 188

Observer u

Eye - Right

PSF size indeg (d) + l1 2 4

PSF size in pixels (n) 64 128 - 512 1024 2048
Wavelength in nm (1) 400 - 700
Pupil diameterinmm (p) 2 4 .
Defocus in diopters (D) -2 -1 -0.5 -0.25 l 025 05 1 2

Letter size in arcmin . 10 20 40 80

This calculator computes the monochromatic human optical PSF for a selected eye and specified parameters of the calculation. This
demonstration is included as a supplement to the paper: Watson, A. B., (2015). Computing human optical point spread functions.
Journal of Vision, http://www.journalofvision.org/15/2/26/. Copyright Andrew B. Watson. Date of this version: 2015/2/21.

Instructions: Select observer, eye, and parameters. The figure shows the PSF, the retinal
image of a letter, and a log-log plot of the radial MTF. This demonstration is useful for illustrating the effect
of parameters on the accuracy of the PSF and MTF. Calculation time will increase with the PSF size in pixels.

for each mode in the set of Zernike coefficients. This
generation of many images can be slow. The time taken

. is proportional to s%. If a polychromatic PSF is
sPeed of comPUtatlon generated, the time will be multiplied by the number of
wavelengths. However, the Zernike images need only to

At the heart of the computation of a PSF is the be computed once, for any particular value of s, or
generation of the Zernike basis function images, one combination of p (pupil diameter), 4 (wavelength), and
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d (PSF image degrees). The function ZernikeImage
remembers previously computed results, so subsequent
calls are much faster.

Here is an example. The function
AbsoluteTiming returns seconds. We evaluate the
same expression twice.

AbsoluteTiming[ZernikePointSpread
[TestCoefficients] ;] [[1]]

0.277885

AbsoluteTiming[ZernikePointSpread
[TestCoefficients] ;] [[1]]

0.118230

Keywords: Zernike, PSF, blur, optics, retinal image,
software

I thank Larry Thibos for early advice on optical
computations and for providing the database of
wavefront aberrations. I thank Pablo Artal for useful
comments and calculations. I thank José Antonio Diaz
Navas for generous assistance with pupil scaling
formulas. This work supported by the NASA Space
Human Factors Research Project WBS 466199.

Commercial relationships: none.

Corresponding author: Andrew B. Watson.

Email: andrew.b.watson@nasa.gov

Address: NASA Ames Research Center, Moffett Field,
CA, USA.

Artal, P. (1990). Calculations of two-dimensional
foveal retinal images in real eyes. Journal of the
Optical Society of America A, 7(8), 1374-1381,
http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?’cmd=Retrieve&db=PubMed&dopt=
Citation&list_uids=2398446

Artal, P., Santamaria, J., & Bescos, J. (1989). Optical-
digital procedure for the determination of white-
light retinal images of a point test. Optical
Engineering, 28(6), 286687.

Atchison, D. A., & Scott, D. H. (2002). Contrast

sensitivity and the Stiles—Crawford effect. Vision
Research, 42(12), 1559-1569, http://www.

Watson 24

sciencedirect.com/science/article/pii/
S0042698902000846

Bara, S., Arines, J., Ares, J., & Prado, P. (2006). Direct
transformation of Zernike eye aberration coeffi-
cients between scaled, rotated, and/or displaced
pupils. Journal of the Optical Society of America A:
Optics, Image Science, & Vision, 23(9), 2061-2066,
http://www.ncbi.nlm.nih.gov/pubmed/16912732

Bara, S., Pailos, E., Arines, J., Lopez-Gil, N., & Thibos,
L. (2014). Estimating the eye aberration coefficients
in resized pupils: is it better to refit or to rescale?
Journal of the Optical Society of America A: Optics,
Image Science, & Vision, 31(1), 114-123.

Bracewell, R. (2003). Fourier analysis and imaging. New
York: Springer.

Coe, C., Bradley, A., & Thibos, L. (2014). Polychro-
matic refractive error from monochromatic wave-

front aberrometry. Optometry & Vision Science,
91(10), 1167-1174.

Dai, G. (2011). Validity of scaling zernike coefficients
to a larger diameter for refractive surgery. Journal
of Refractive Surgery, 27(11), 837-841.

Dai, G.-m. (2006). Scaling Zernike expansion coeffi-
cients to smaller pupil sizes: A simpler formula.
Journal of the Optical Society of America A, 23(3),
539-543, http://josaa.osa.org/abstract.cfm?
URI=josaa-23-3-539

Dai, G.-m. (2008). Wavefront optics for vision correc-
tion. Bellingham, WA: SPIE.

Diaz, J. A., Fernandez-Dorado, J., Pizarro, C., &
Arasa, J. (2009). Zernike coefficients for concentric,
circular scaled pupils: An equivalent expression.
Journal of Modern Optics, 56(1), 131-137, http://dx.
doi.org/10.1080/09500340802531224

Goodman, J. W. (2005). Introduction to Fourier optics
(3rd ed.). Englewood, CO: Roberts & Co.

Janssen, A. J. E. M., & Dirksen, P. (2006). Concise
formula for the Zernike coefficients of scaled
pupils. Journal of Micro/Nanolithography, MEMS,
and MOEMS, 5(3), 030501-030501-3, http://dx.doi.
org/10.1117/1.2345672

Mahajan, V. N. (2010). Zernike coefficients of a scaled
pupil. Applied Optics, 49(28), 5374-5377, http://ao.
osa.org/abstract.cfm?URI=a0-49-28-5374

Mahajan, V. N. (2013). Optical imaging and aberra-
tions: Wavefront Analysis (Vol. 3). Bellingham,
WA: SPIE.

Marcos, S., Burns, S. A., Moreno-Barriusop, E., &
Navarro, R. (1999). A new approach to the study of
ocular chromatic aberrations. Vision Research,
39(26), 4309-4323, http://www.sciencedirect.com/



Journal of Vision (2015) 15(2):26, 1-25

science/article/B6TOW-3XT69YK-2/2/
45dd4c75848bd1f6c762482708921da3

Metcalf, H. (1965). Stiles-Crawford apodization. Jour-
nal of the Optical Society of America A, 55(1), 72—
73, http://www.opticsinfobase.org/abstract.
cfm?URI=josa-55-1-72

Nestares, O., Navarro, R., & Antona, B. (2003).
Bayesian model of Snellen visual acuity. Journal of
the Optical Society of America A: Optics, Image
Science, & Vision, 20(7), 1371-1381, http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=
Retrieve&db=PubMed&dopt=Citation&
list_uids=12868641

Ommani, A., Hutchings, N., Thapa, D., & Lakshmi-
narayanan, V. (2014). Pupil scaling for the estima-
tion of aberrations in natural pupils. Optometry &
Vision Science, 91(10), 1175-1182.

Ravikumar, S., Thibos, L. N., & Bradley, A. (2008).
Calculation of retinal image quality for polychro-
matic light. Journal of the Optical Society of
America A: Optics, Image Science, & Vision, 25(10),
2395-2407, http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?’cmd=Retrieve&db=PubMed&
dopt=Citation&list_uids=18830317

Schwiegerling, J. (2002). Scaling Zernike expansion
coefficients to different pupil sizes. Journal of the
Optical Society of America A: Optics, Image
Science, & Vision, 19(10), 1937-1945, http://www.
ncbi.nlm.nih.gov/pubmed/12365613

Stiles, W. S., & Crawford, B. H. (1933). The luminous
efficiency of rays entering the eye pupil at different

points. Proceedings of the Royal Society B, 112,
428-450.

Thibos, L. N., Applegate, R. A., Schwiegerling, J. T., &
Webb, R. (2002). Standards for reporting the
optical aberrations of eyes. Journal of Refractive
Surgery, 18(5), S652-S660.

Thibos, L. N., Hong, X., Bradley, A., & Cheng, X.
(2002). Statistical variation of aberration structure
and image quality in a normal population of
healthy eyes. Journal of the Optical Society of
America A: Optics, Image Science, & Vision, 19(12),
2329-2348, http://josaa.osa.org/abstract.
cfm?URI=josaa-19-12-2329

Thibos, L. N., Ye, M., Zhang, X., & Bradley, A.

Watson 25

(1992). The chromatic eye: A new reduced-eye
model of ocular chromatic aberration in humans.
Applied Optics, 31(19), 3594-3600, http://ao.osa.
org/abstract.cfm?URI=a0-31-19-3594

Van Meeteren, A. (1974). Calculations on the optical
modulation transfer function of the human eye for
white light. Journal of Modern Optics, 21(5), 395—
412.

Voelz, D. G. (2011). Computational fourier optics: A
MATLAB tutorial. Bellingham, WA: SPIE.

Watson, A. B. (2013). A formula for the mean human
optical modulation transfer function as a function
of pupil size. Journal of Vision, 13(6):18, 1-11,
http://journalofvision.org/content/13/6/18, doi:10.
1167/13.6.18. [PubMed] [Article]

Watson, A. B., & Ahumada, A. J. (2012). Modeling
acuity for optotypes varying in complexity. Journal
of Vision, 12(10):19, 1-19, http://journalofvision.
org/content/12/10/19, doi:10.1167/12.10.19.
[PubMed] [Article]

Watson, A. B., & Ahumada, A. J., Jr. (2008).
Predicting visual acuity from wavefront aberra-
tions. Journal of Vision, 8(4):17, 1-19, http://
journalofvision.org/content/8/4/17, doi:10.1167/8.
4.17. [PubMed] [Article]

Wolfram Research, Inc. (2013). Mathematica (Version
9.0 ed.) [software]. Champaign, IL: Author.

Mathematica notebook and demonstration

As a supplement to this report we provide a
Mathematica notebook Zernike.nb. This contains
definitions and example usage of the functions de-
scribed here. It also contains the database of wavefront
aberrations for 200 eyes collected by Thibos, Hong et
al. (2002). We also provide a separate demonstration
titled ZernikePointSpreadDemo.cdf. These files can be
viewed with the free CDF player available at http://
wolfram.com/cdf-player/.


http://www.ncbi.nlm.nih.gov/pubmed/23729769
http://www.journalofvision.org/content/13/6/18
http://www.ncbi.nlm.nih.gov/pubmed/23024356
http://www.journalofvision.org/content/12/10/19
http://www.ncbi.nlm.nih.gov/pubmed/18484856
http://www.journalofvision.org/content/8/4/17
http://
http://
http://wolfram.com/cdf-player/
http://wolfram.com/cdf-player/
http://www.journalofvision.org/site/misc/cdf/JOV-15.2.26.html
http://www.journalofvision.org/site/misc/cdf/JOV-15.2.26.html

	Introduction
	e01
	e02
	e03
	e04
	An example
	Basics
	Computing Zernike polynomials
	Computing the PSF and OTF
	Computing a retinal image
	Computing the diffraction-limited PSF and
	e05
	Chromatic aberration
	e06
	e07
	e08
	Computing a polychromatic PSF
	Database of 200 eyes
	Scaling Zernike coefficients to a
	e09
	Apodization
	Varying defocus and astigmatism
	Some useful functions
	Technical issues in calculation of
	e10
	Speed of computation
	Artal1
	Artal2
	Atchison1
	Bara1
	Bara2
	Bracewell1
	Coe1
	Dai1
	DaiGm1
	DaiGm2
	Diaz1
	Goodman1
	Janssen1
	Mahajan1
	Mahajan2
	Marcos1
	Metcalf1
	Nestares1
	Ommani1
	Ravikumar1
	Schwiegerling1
	Stiles1
	Thibos1
	Thibos2
	Thibos3
	VanMeeteren1
	Voelz1
	Watson1
	Watson2
	Watson3
	WolframResearch1
	Appendix

