A Cognitive Walkthrough of Multiple Drone Delivery Operations (2021)
Advances of early twenty-first century aviation and transportation technologies provide opportunities for enhanced aerial projects, and the overall integration of unmanned aircraft systems (UAS) into the National Airspace System (NAS) has applications across a wide range of operations. Through these, remote operators have learned to manage several UAS at the same time in a variety of operational environments. The present work details a component piece of an ongoing body of research into multi-UAS operations. Beginning in early 2020, NASA has collaborated with Uber Technologies to design and develop concepts of operations, roles and responsibilities, and ground control station (GCS) concepts to enable food delivery operations via multiple, small UAS (sUAS). A cognitive walkthrough was chosen as the method for data collection. This allowed information to be gathered from UAS subject matter experts (SMEs) that could further mature designs for future human-in-the-loop (HITL) simulations; in addition, it allowed information to be collected remotely during the stringent restrictions of the COVID-19 pandemic. Consequently, the described cognitive walkthrough activity utilized remote data collection protocols mediated through the usage of programs designed for presentation and telecommunications. Scenarios were designed, complete with airspace, contingencies, and remedial actions, to be presented to the SMEs. Information was collected using a combination of rating scales and open-ended questions. Results received from the SMEs revealed expected hazards, workloads, and information concerns inherent in the contingency scenarios. SMEs also provided insight into the design of GCS tools and displays as well as the duties and relationships of human operators (i.e., monitors) and automation (i.e., informers and flight managers). Implications of these findings are discussed.
aircraft, Cognitive, Delivery, Drone, Multiple, Operations, systems, UAS, unmanned, Walkthrough
In AIAA AVIATION 2021 FORUM (p. 2330). doi: https://doi.org/10.2514/6.2021-2330.
|