Go to the NASA Homepage
 
Search >
Click to Search
Human Systems Integration Division homepageHuman Systems Integration Division homepage Organization pageOrganization page Technical Areas pageTechnical Areas page Outreach and Publications pageOutreach and Publications page Contact pageContact page
Human Systems Integration Division Homepage
Outreach & Publications Sidebar Header
Go to the Outreach & Publications pageGo to the Outreach & Publications page
Go to Awards pageGo to Awards page
Go to News pageGo to News page
Go to Factsheets pageGo to Factsheets page
Go to Multimedia pageGo to Multimedia page
Go to Human Factors 101 pageGo to Human Factors 101 page
What is Human System Integration? Website
Publication Header
Distinct Pattern of Oculomotor Impairment Associated with Acute Sleep Loss and Circadian Misalignment  (2019)
Abstract Header
Sleep loss and circadian misalignment have long been known to impair human cognitive and motor performance with significant societal and health consequences. It is well known that human reaction time to a visual cue is impaired following sleep loss and circadian misalignment, but it has remained unclear how more complex visuomotor control behaviour is altered under these conditions. In this study, we measured 14 parameters of the voluntary ocular tracking response of 12 human participants (six females) to systematically examine the effects of sleep loss and circadian misalignment using a constant routine 24-h acute sleep-deprivation paradigm. The combination of state-of-the-art oculometric and sleep-research methodologies allowed us to document, for the first time, large changes in many components of pursuit, saccades and visual motion processing as a function of time awake and circadian phase. Further, we observed a pattern of impairment across our set of oculometric measures that is qualitatively different from that observed previously with other mild neural impairments. We conclude that dynamic vision and visuomotor control exhibit a distinct pattern of impairment linked with time awake and circadian phase. Therefore, a sufficiently broad set of oculometric measures could provide a sensitive and specific behavioural biomarker of acute sleep loss and circadian misalignment. We foresee potential applications of such oculometric biomarkers assisting in the assessment of readiness-to-perform higher risk tasks and in the characterization of sub-clinical neural impairment in the face of a multiplicity of potential risk factors, including disrupted sleep and circadian rhythms.
Private Investigators Header
Authors Header
Groups Header
Keywords Header
acute, circadian, impairment, loss, misalignment, oculomotor, performance, sleep
References Header
J. Physiology, 2019; 0:1-18
Download Header
Adobe PDF Icon  20190033423.pdf (Download Acrobat Reader Click to download Adobe Acrabat Reader)
  (999KB) (application/pdf)
Go to the First Gov Homepage
Go to the NASA - National Aeronautics and Space Administration Homepage
Curator: Phil So
NASA Official: Jessica Nowinski
Last Updated: August 15, 2019